Equality Logic

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equality propositional logic and its extensions

We introduce a new formal logic, called equality propositional logic. It has two basic connectives, $boldsymbol{wedge}$ (conjunction) and $equiv$ (equivalence). Moreover, the $Rightarrow$ (implication) connective can be derived as $ARightarrow B:=(Aboldsymbol{wedge}B)equiv A$. We formulate the equality propositional logic and demonstrate that the resulting logic has reasonable properties such a...

متن کامل

Equality in Linear Logic

1 Quantales In this section we introduce the basic deenitions and results of the theory of quantales (a good reference is Ros]). Quantales were introduced by Mulvey ((Mul]) as an algebraic tool for studying representations of non-commutative C-algebras. Informally, a quantale is a complete lattice Q equipped with a product distributive over arbitrary sup's. The importance of quantales for Linea...

متن کامل

Transforming equality logic to propositional logic

We investigate and compare various ways of transforming equality formulas to propositional formulas, in order to be able to solve satisfiability in equality logic by means of satisfiability in propositional logic. We propose equality substitution as a new approach combining desirable properties of earlier methods, we prove its correctness and show its applicability by experiments.

متن کامل

Deciding Effectively Propositional Logic with Equality

Effectively Propositional Logic (EPR), also known as the Bernays-Schönfinkel class, allows encoding problems that are propositional in nature, but EPR encodings can be exponentially more succinct than purely propositional logic encodings. We recently developed a DPLL-based decision procedure that builds on top of efficient SAT solving techniques to handle the propositional case efficiently whil...

متن کامل

On Elementary Equivalence for Equality-free Logic

This paper is a contribution to the study of equality-free logic, that is, first-order logic without equality. We mainly devote ourselves to the study of algebraic characterizations of its relation of elementary equivalence by providing some Keisler-Shelah type ultrapower theorems and an Ehrenfeucht-Fraı̈ssé type theorem. We also give characterizations of elementary classes in equalityfree logic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Section of Logic

سال: 2020

ISSN: 2449-836X,0138-0680

DOI: 10.18778/0138-0680.2020.14